Aggregation-governed oriented growth of inorganic crystals at an organic template.

نویسندگان

  • Sumit Kewalramani
  • Geoffrey Dommett
  • Kyungil Kim
  • Guennadi Evmenenko
  • Haiding Mo
  • Benjamin Stripe
  • Pulak Dutta
چکیده

X-ray studies performed during the growth of CdCO(3) and MnCO(3) crystals from supersaturated aqueous solutions, at fatty acid monolayer templates, reveal that the nucleates are nearly three-dimensional powders below a threshold supersaturation. However, at higher supersaturations, the crystals are preferentially oriented with the {0 1 2} direction vertical. Scanning electron microscope images of samples transferred to substrates show discrete crystals at low concentrations, while at higher concentrations the crystals self-aggregate to form linear chains and sheets. The authors speculate that preferential alignment at the organic-inorganic interface is enhanced as a consequence of oriented aggregation of crystals. The role of monolayer-ion interactions in governing the morphologies and the resulting orientation of the inorganic nucleate is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patterned growth of large oriented organic semiconductor single crystals on self-assembled monolayer templates.

This work demonstrates a method for inducing site-specific nucleation and subsequent growth of large oriented organic semiconductor single crystals using micropatterned self-assembled monolayers (SAMs). We demonstrate growth of oriented, patterned, and large organic semiconductor single crystals for potential use in organic electronic devices. The control over multiple parameters in a single sy...

متن کامل

Inorganic–Organic Hybrid Surfactant Crystals: Structural Aspects and Functions

Hybrid single crystals consisting of an organic surfactant and an inorganic moiety are promising functional materials. Layered crystals composed from alternate inorganic and surfactant layers are obtained by the template effect of long alkyl chain moiety. The composition, crystal packing, and molecular arrangement of the hybrid single crystals are controllable by changing the inorganic constitu...

متن کامل

Organic template-free synthesis of Ni-ZSM-5 nanozeolite: a novel catalyst for formaldehyde electrooxidation onto modified Ni-ZSM-5/CPE

A novel modified Ni-ZSM-5 nanozeolite was fabricated via an organic template-free hydrothermal route. The average particle size of Ni-ZSM-5 nanozeolite was calculated to be 85 nm by scanning electronic microscopy. Then, Carbon paste electrode (CPE) was modified by Ni-ZSM-5 nanozeolite and Ni2+ ions were then incorporated to the nanozeolite matrix. Electrochemical behavior of this electrode was ...

متن کامل

Vertical aluminophosphate molecular sieve crystals grown at inorganic-organic interfaces.

Tubular aluminophosphate molecular sieve crystals were grown at an organic interface with their channels (7 angstroms in cross section) vertical to the substrate. To induce surface nucleation and oriented growth of AIPO(4)-5 crystals, organophosphonate layers cross-linked with Zr(IV) were assembled on a gold substrate and the modified substrate was immersed in a hydrothermal bath containing rea...

متن کامل

Organic template-free synthesis of Ni-ZSM-5 nanozeolite: a novel catalyst for formaldehyde electrooxidation onto modified Ni-ZSM-5/CPE

A novel modified Ni-ZSM-5 nanozeolite was fabricated via an organic template-free hydrothermal route. The average particle size of Ni-ZSM-5 nanozeolite was calculated to be 85 nm by scanning electronic microscopy. Then, Carbon paste electrode (CPE) was modified by Ni-ZSM-5 nanozeolite and Ni2+ ions were then incorporated to the nanozeolite matrix. Electrochemical behavior of this electrode was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 125 22  شماره 

صفحات  -

تاریخ انتشار 2006